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We consider preemptive scheduling of N

component locations and N spares. h\\
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tasks on m processors;
processors have different speeds, tasks require amounts of work which
are exponentially distributed, with different parameters. The policies
of assigning at every moment the task with shortest (longest) expected
processing time among those not yet completed to the fastest processor
available, 2nd shortest (longest) to the 2nd fastest etc., are examined,
and shown to minimize expected values of various cost functions. As
special cases we obtain policies which minimize expected flowtime,
expected makespan and expected lifetime of a series system with m
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SCHEDULING TASKS WITH EXPONENTIAL SERVICE TIMES ON NONIDENTICAL
PROCESSORS TO MINIMIZE VARIOUS COST FUNCTIONS

by

Gideon Weiss and Michael Pinedo

1. INTRODUCTION

Consider the following situation: processors 1, ..., m are available

to process tasks 1, ..., N . Task j needs an amount X of processing,

3
where Xj is a random variable with an exponential distribution, with
parameter A, . The processing can be done by any of the processors, and

j

preemptions and switches of processors are allowed. Processor i has
speed s; - The processing of task j requires for completion a total
time of tl’ LY tm on processors 1l, ..., m respectively, so that
tls1 + e + tmsm = Xj . Xl’ sl aly Xn are assumed to be independent

of each other, and independent of the manner in which processors are
assigned to tasks. Starting at time O , a cost per unit time g{U}

is incurred at time t , where {U} C {1, ..., N} 1is the set of un-
completed tasks at t . Thus for every scheduling rule (which determines
for every {U} C {1, ..., n} of uncompleted tasks at t , which of the
tasks should be processed on which processor) there is an expected cost
over [0,») . We want to find a scheduling rule, which minimizes the
expected cost.

Let (U} = {jl, vy jk} where > eee > ) . We consider

A
Ajl " M1y I

two rules in particular: SEPT requires task ji to be processed on processor

i, for i < min (k,m) ; LEPT requires task jk-i+1 on processor i for

i < min (k,m) . In other words, both rules use only the fastest processors,
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and process on them tasks ordered by their expected length; SEPT assigns
the task with the Shortest Expected Processing Time to the fastest processor,
LEPT assigns the task with the Longest Expected Processing Time to the
fastest processor. We find for a variety of cost rates g that SEPT
or LEPT minimizes the expected total cost.

In particular we find SEPT is optimal for the following scheduling
problems: to minimize the sum of completion times (flow time); to
minimize the weighted sum of completion times where the weight of the
completion of task j is wj , and whenever Aj > Ak , we have wj >y i
and to minimize the sum of the first k completion times. LEPT is
optimal for these scheduling problems: to minimize the last completion
time (makespan); and to minimize the total amount of processing (times
multipiied by speeds) done by processors 1, ..., r , (r < m) , when
it is assumed that for any k < m processors 1, ..., k are used as
long as |[U| > k .

The situation described above can also be interpreted as a reliability

problem, assuming a system with m component locations, and N spares.

Component location 1 causes the spare to wear out at rate Sy - When
spare j operates in locations 1, ..., m for total times tl' R tm >
betore it fails, then X, = t.s. + ¢+ + t 8 , and X, has exponential

3 ) (i | m m j
distribution with rate X, . We show that if the system is a series

3

system, then putting the best component (smallest XA) in the location
with highest wearout, the second best in second highest wearout location,

etc., (the equivalent of LEPT) maximizes the expected system lifetime.
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The present paper generalizes results of [2], [3], [5], which
deal only with identical processors, and with the minimization of flow-
time and of makespan. Bruno and Downey [2] seem to have the earliest
results, showing that SEPT and LEPT minimize flowtime and makespan for
two (m = 2) 1identical processors. Frederickson [3] generalizes these
results to any m identical processors. In the present paper we follow
some of the derivations used by Frederickson, but we use a more streamlined
dynamic programming formulation which dispenses with some of the exchange
arguments used by Frederickson and by Bruno and Downey. A slightly
different dynamic programming formulation is used by Van der Heyde [5]
to show that LEPT minimizes makespan for m identical processors.
Pinedo and Weiss [4] use a different method to prove that LEPT minimizes
makespan for m = 2 identical processors and also discuss a case in
which the amount of processing has a hyperexponential distribution.
Eugene L. Lawler (private communication) has suggested the investigation
of nonidentical processors, and Sheldon M. Ross has suggested the reli-
ability problem.

The paper is organized as follows: Section 2 contains a formulation
of the problem as a dynamic programming problem and a derivation of a
necessary and of a sufficient condition for the optimality of a priority
policy. Section3 and 4 contain sufficient conditions on the cost rate g
under which SEPT or LEPT are optimal. Section 5 lists the applications
of Section 3 and 4, and some counterexamples. A discussion of the suffi-

cient conditions, and of some open problems is contained in Section 6.
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2. DYNAMIC PROGRAMMING FORMULATION AND CONDITIONS OF OPTIMALITY

At time t = 0 we have tasks {1, ..., N} and processors

{1, ..., m} . We order the processors to have s 3_52 > sele > g

i s DN
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We shall assume throughout that m > N . Most practical situations
can be reformulated so as to have m > N by adding processors with
speeds s = 0 . Tasks {1, ..., N} are then assigned to processors,
and processed until a task is completed, and a new assignment of processors
is chosen. We consider t = 0 and the times at which tasks are completed
as decision moments. The state U at a decision moment is the set of
uncompleted tasks, U C {1, ..., N} . The set of actions available in

state U , J(U) is defined as:
JW) = {£ | £ 1is a 1-1 function from U into {1, ..., m}}

For state U and action f on J(U) , the next decision moment occurs
time T later, where T is an exponential random variable with rate

A (D) = ) st The state at the next decision moment is U'

jeu £(3)

where:

P(U' = U - {k}) = - ke U,
The cost incurred between the two decision moments is g(U) ¢« T , where
g 1is a set function, with g(¢) = 0 .

Note that at decision moment t and state U , the effect of the
choice of action f does not depend on the state at t , T € [0,t)
This corresponds to the situation described in the introduction, because

of the memoryless property of the exponential distribution.




At each decision moment t , when the state is U , a policy
specifies which action from J(U) should be taken. We use Gw(U,t)
to denote the expected value of the cost incurred over (t,») , starting
with state U at the decision moment t and using policy =7 . We
wish to find w* which minimizes G"({l, cessl NJks0) . At time ¢t and
state U a stationary policy will choose an action from J(U) independent
of t . For such policies G"(U,t) = G"(U,O) ; we will use Gn(U) to
derote G"(U,O) . The calculation of the expected cost GW(U) , when T

chooses action f at U can be done using the recursion relation:

g(U) + ) A,s.,..G
1eu JE(I) T

W)

(0 = {3})

(1) G, () =

We call an action f ¢ J(U) fast if for |U| =n f is 1-1 from
U to 1, ..., n . A policy wm 1is fast if it uses only fast actions
(i.e., since $y B By LELRE only the fastest processors are used).
We will call a policy a priority policy if for some particular renumbering
of the tasks as {1, ..., N} , for every state U = {il, S in} where
UK in , ™ takes the action f(ij) e sl ey A .

Let m be a priority policy. Let U be an arbitrary fixed subset
of {1, ..., N} . We shall make the following simplifications in notation:
we shall renumber the tasks in U , in order of their priorities according
to m,as U= {1, ..., n} . Thus the action f chosen by m at U
will be f(j) = j for j =1, ..., n . We shall also use the following

notations: let A = Af(U) s, G = GW(U) s G
k-1 n

Ab® 3 X0, % ) X#y.®h 0 =1k}, g ), g gl =~k ,
kogm 33 ey 31 .

= 6 U - (kD)

and Gk9 = GW(U - {k,2}) . The recursion (1) in this notation gives:
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(2) G T A
k-1 n
+ A.s,.G A.s G
" '21 iTik .gzﬂ 3%3-1"3k
3) B ] bl
k Ak

So far we have discussed policies which allow decisions only at
t = 0 and at task completion times; we denote these by IPo . We could
also consider a much wider class of policies, IP , which allows decisions
at any time t ¢ [0,#) . The action space for these policies, at each ¢t ,
and in the state U , would still be J(U) . We note then that IPo in-
cludes all the stationary policies in IP . We will not consider TP ,
because of difficulties in defining the process under general m e IP
Instead we will consider for a fixed A the class IFA of policies which
allow decisions at 0,A,2A, ..., and at task completions. In TP by

A
(1]
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there exist optimal policies, there exists a stationary optimal policy,
and a necessary and sufficient condition for 7 to be optimal is
that m 1is excessive. If 1m 1is stationary (that is 7 ¢ Po) it
will then be optimal in Po
We say that policy m 1is excessive in P if for any decision

A

moment t and any state U , we can show that for all f e J(U) ,
Gf!n(U’t) Z,G“(U,t) . Here Gf|n(U’t) is the expected cost of taking
action f at t , and continuing with policy m from the next decision
onwards.

To check that a stationary policy 1 € Po is optimal among all
of PO it is therefore sufficient to check that there exists A such
that for every 6 < A , every state U , and every f ¢ J(U) ,
Gfln(u) > Gﬁ(U) where action f 1is taken from O to & or the first

completion, which ever comes first, and 7 is used from then on.

We derive now a condition for the optimality of a priority policy

Theorem 1:

Let m be a priority policy. Assume s1 > )

> seed > g > 0
m

ma2N .

(1) m 1is a unique optimal policy if for every arbitrary fixed U

(4) 7 = Gk >0 [ S R o

(5) A (G = G) = 3G =G >0 k <2

(ii) Conditions (4), (5) as weak inequalities are necessary for the

optimality of

-
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(i) We want to show that there exists A such that if & < A ,
for any action f' € J(U) if f' is taken from 0 to the
' minimum of & and the first completion, and =m 1is used from
then on, then (4) and (5) imply Gf'|n(U) > G . This will imply
strong excessivity of m in PA , and hence unique optimality
in PA and therefore in Po . For an arbitrary action f'
in J(U) , we can write
(6) Gerjg =82t ) O i 8Ai5¢(4))C * o(8)
;
| The term o(8) includes costs incurred over (0,58) when there
is an event in (0,8) , costs incurred over (6,») if there is
f more than 1 event in (0,8) , and correction terms for the
| probabilities that no event occurs in (0,8) or that task j
is completed in (0,68)
Assume f' # f . We will look at two cases:
Case 1:

Define

cagse there exists 1 such that £'(i) = ¢

There exists k < n such that f'(j) # k for any j . In that

v
=2

We have s, > s

£'(3) ] ® &
fl'(j) = ¢

e




Case 2:

LE€1)s <ney £(@)) = {1, ..., 0} « 1In this csee there exists

l2k<t<n auchthat £(k) > £'Q2) . Lat sy =a",

3 Lot

sf'(l) = s , where s > g" Define:
(f’(j) j# k2
£ ) = (k) jo=
'f'(l) ji=k.
We use (6) to obtain, in Case 1
(7) Gf,l"—Gf,,lﬂ=6>\i(sk—sz)(G-Gi) + 0(§)
and in Case 2
[ = s ' ot = ] -
(8) Gf'l“ anvgn 5(s s )(Xk(G Gk) \Q(G GQ)) + o(§)

By (4) and (5) and by Sk > S, > s'' > s' , we then have:

Gf"’lT —Gf"lﬂ' = 8K + 0/(§) ; K = 0 .

By repeating this argument for f'' and obtaining f''' etc., we get
in a finite number of steps action f . So we have:
Gf'[n - GTT = 6Kl + 0(4) Kl e {0)

and we can now find A_., such that for all 6 < A o e =G =0,
£ £ £'m m

Repeating for all actions in J(U) (which is finite) we obtain

A = min Af for which G

£ l“ - GTr > s o alkl 6 = A £ e JUY
flsJ(U) v il

1
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(ii) Assume now, in contradiction to the weak inequalities (4), (5)

that:

Case 1: G - Gk < 0 for some k or:

Case 2: Ak(G - Gk) - XQ(G - Gz) < 0 for some k < 2

We can define in Case 1:
2l B S (m >N > n)
'm j

and in Case 2:

A

and use (7) or (8) to show Gf'[n(U) -G 0 for & small enough, which

contradicts the optimality.l
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3. OPTIMALITY OF SEPT POLICIES

Let the tasks be ordered by Al 3_A2 Fol GLY XN , and let m be

the priority policy for that ordering; m is a SEPT policy.

Lemma 1:

Let m be a priority policy. Assume g(¢) =0 and g(U) > g(V) if

U2V . Then, for arbitrary fixed u (with the above simplified notation),

(9) G-G >0 12 B Sy et

and g(U) > g(V) if U DV implies:

(10) G - Gk >0 k="l e, .

Proof:

The proof is by induction on n , the size of U .

Induction Base, n = 2 :

For n = 2 , we have:

g{1,2} + xlslcl + Azszc2
A.s

151 + 228

T

[
>

So

A,s

s Kgss
G -G (3{1,2} - ;I g{2} + o g{1} [(Ays) + Ay85) 2

> (g{1,2} - g{Z})/(Als1 +2,8,) > 0

el m




TR S T

12

and:

A
G ~ G2 = (g{l,Z} + xi g{2} - g{l})/(llsl4-kzsz) >

> (8{1,2} - g{1H)/ (s + X,8,) > 0.

General n :

We will show the induction argument which proves (10). The proof

for (9) is similar. We shall assume that (10) holds for sets of size

Ssa=1.,. Mrite:
stk A s,
(11) ey e &0 e
j#k J
8y A - Ak k-1 X.s,. A.s :
(1) a = =S seelie S e N kT
j=1 % 3% g=ksl .
)
So {noting A s, + A - A= X, (s -8,)
( Kk Tk soktl 1 J)
£~ 8 Ass, B A AE, .= 8
c-ck=——r—k+2—-7r1(c.-c.k)+ } lji ol (G, = G,) > 0
A T j j jak+1 | 3

since g > gk ’ sj-l 3_sj and Gj > ij § Gk > ij by the induction

assumption.

We now prove

Theorem 2:

The SEPT policy = 1is optimal if g satisfies, for every

Pl ss W)
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(13) g(¢) =0, g >0 .
(14) g(U - {2}) > g(U - {k}) B8k e W,
(15) g(U) - g(U - {k}) - g(uU,- {2}) + g(U - {k,2}) >0 k, 2eU.
Proof :
We note first by (13) and (15) that

(16) G(U) > G(V) for UDV .

Assume first that Al > Az > eee > AN >0, sl > 52

that (13) - (15) and hence (16) hold as strict inequalities. We then

Zeieuet sm >0,m >N, and

show that w 1is the unique optimal policy.
Let U be an arbitrary fixed subset of {1, ..., N} then we know
from the preceding lemma that (10) holds. Using the above simplified

notation we now will show:

(17) G - Gk - G2 + sz » 0

(18) A g€ =6 1) = XE=6) >0,

k-1
The proof is by induction om n , the size of U .

Induction Base, n = 2 :

For n = 2 we have (noting that G = 0)

12

3
g{l,2} - g{1l} - vy g{2}
1
G-G, -G, = >0
1 2 Alsl + Azsz

—
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which proves (17) and

(A, =X,))s, g{1,2} - (s, +s,) (A, g{2} - g{1})
3, (6-6)) =y (G-Gy) = ——21L i e 2

(A18) +2;8,)8)
(Als1 + Kzsz)g{l} - ()\Zs1 + Alsz)g{Z}

(19) S
(A8 + Ay89)s,

o

(Al = )\2)(5l - sz)g{Z}

>0
(Xls1 + )\232)5l

which proves (18).

General n :

We shall assume (17) and (18) hold for sets of size <n - 1.

To prove (17) write:

22 L5 Al At A.s A.s
(20) Gl = T + T GE + Zl __][_\__]_ G & Z =D G-l
J J j=2+1 -
g A~ A k-1 X.s, =l X8,
e B kl sl - T e . T . Cixe
j=1 J j=k+l J
n A S._»
+ 7 —-J—J——A oy
j=2+1 J¥

We have, substituting (11), (12), (20), (21):

>




A(G = G =8, % le) = (g - g ~ 8 * gkl)

+ } 8.6 =6.=-6.,+6..)
j#k, L - DR

(22)

n-1
+ Z (s
=2

- 8000 Gy = Gypeg) = Ay € )]

=1 sk T et T Ssane

® xn(sn—l £ sn)(Gk 5 Gkn) <

since all terms are > 0 , the first by (15), the next three by (17)
for (n - 1) , the fifth by (18) for (n - 1) , the last by
(10).

To prove (18) write:

k=2
A Uk (6, ='6, = A (G, = G, )}
jZl 71 k=l } Jk-l) k( j Jk)
n
- A8, 1A G, - G, - X (G, -G, )}
j=£+l 351 M1y = Cppag) = M08 = G

.V " Xk))AG 5T Ma%eiee T %%

n

+ 7 (s - 8,)6,% -2 . {A .G -g
gabag 31T T e N T B
= MeSa1Ce-1id M NG < 8 = M1%k-18k-1! ¢

Hence by rearranging and collecting terms:

15
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k' k-1
k=2
= X s e .
jzl 285 Oc1 G5 = Gypip) = A6y - G
n
. g A -G 5 i
ot ; J-E+1 et i By = By ) S X8, =80
+ (A -2l lg - - ) . :
k-1 k [) Aecy = A k-l oy k’

) 5 n
- % G - i \ g .
'jZk jsj( Gj) j:£+1 jsj_l(c Gj)

The first two terms are positive by (18) for (n - 1) . We still need
to show:
g_——ilsll—__g +A—k_g >
(Ak-l - kk) k-1 Ak-l - Xk k
(24)
) )
> 3 A8,06-6) - T - B
PLG s R e ]
By (14)
A
g - ! s s s -3
Ak-l - Ak k-1 Ak-l - A k k
but:
n n
= A\G - A.8,.G, = A,8,(G -G
g jzl 1%1°5 jzl 3% 3
k-1 n

373=1"k ~ ik
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SO:

n n
g-8 = ) As.(G-G6)- ] As, (G-G,)
koo 33 I ek 3371 ’

k-1
+ ) As.(6-6G, -G +6G_)
g A4 i

k jk
n
+ A.s (G-G, -G, +6G,,)

but the last two terms are positive by (17) for (n - 1) , which proves
(24) and hence (18). By Theorem 1, (10) and (18) imply that = is
uniquely optimal.

Suppose now we only have ) 2 eieieie> Sh >0, Al > siee 3_AN , and
(13), (14) and (15) only hold as weak inequalities. We can perturb

A's , s's and g very slightly to get strong inequalities. For the

perturbed problem, let G;,(U) be the expected cost under stationary
T Po (of which there are a finite number). Then G:(U) < G;,(U)
for all stationary w' ¢ Po . Letting the perturbation approach zero,
we obtain Gn(U) < Gn,(U) , so m 1is optimal (possibly not unique)

in P .8
o

LR MRS L o J S s e SRS
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4. OPTIMALITY OF LEPT POLICIES

Let tasks 1, ..., N be ordered so that Kl o Xz < el i-An ’

and let m be the priority policy for that ordering; m is a LEPT

policy.

Theorem 3:

The LEPT policy m 1is optimal if g 1is of the form:

(25) (U) =ci..1 ,
g(U) lu|

where:
(26) S Oy ke 2 c NSRS N
and the ck's satisfy:

e ='e c -c
27) S S WS b5 e

Sk Sk-1

(where we let 0/0 stand for 0).

Proof:

We shall again assume strong inequalities in (26) and (27), and

that &, > 8, > ¥ 3 g S 0 5 >Ny and A< A5 € s9v <A . We
m 2 n

1 2 1
will show that 7 is uniquely optimal. A perturbation argument as in
Theorem 2 then implies optimality of = for weak inequalities. We

consider again an arbitrary fixed U , using the simplified notation

described above.

T e wbils ‘ - v
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We note that g(U) > g(V) > g(¢) =0 if UDV # ¢ . Hence by Lemma 1,

G - Ck > (0 for all k .

We now show that

(28) C-6_)-26-6)>0 g, e

hea enl

by induction on n .

Induction Base, n = 2 :

We obtain as in (19):

Al(G = Gl) = KZ(G = G2) ¥

(sl + sz)(Azg{l} - Alg{2}) - (Az = Xl)slg{l,Z}
(Als1 + Azsz)s1

(lz - )\l){(sl + SZ)cl - Slc2}

(Als1 + Xzsz)s1

but, by (27), P < o Co EUOE g

and (28) follows.

General n :

We assume (28) holds for sets of size (n - 1) . We rewrite

M-l M
(23), noting that )‘k > Ak-l s B = —'——‘_-)\— gk—l + —-—-_—\: gk =

Ml = M Ml

e = cn 1 and rearranging the last term, as:

n

19
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{ (6 = B s = B G = Go) =

Ak Xk—l

- - - +
) A 8301 (65 = Gy g) = A6y = Gy )

(29)

n
I8 Oy (6y = 6 p) = (6 - 60} +

n
O = A ) [' ] s, ,{x, .G - Gj_l) = xj(c = Gj)} +
ann(G - Gn) - (cn - Cn—l)]

The first two summations are positive by the induction hypothesis. We

shall show that

(30) Ao (@ =03 e we ) s ' ]
which will be sufficient to prove (28) for k = n . Assuming then (as
an inner induction hypothesis) that (28) holds for n,n -1, ..., k + 1,
the third summation will be positive, and so (28) will follow for k .

To show (30) we calculate G - Gn . We note that because m 1is a
priority policy, the completion times of tasks 1, ..., n - 1 are the
same whether we start with tasks 1, ..., n or with tasks 1, ..., n =~ 1

at t =0, Let ¥(t) , t efo,®) , be the subset of AL, «.vy 1= 1}

of uncompleted tasks at time t , whem V(0) = {1, ..., n - 1}

G-G_ 1isthen the expected value of J [g(v(t) U {n}) - g(V(t))]dt
0

Assume that tasks 1, ..., n -1 ipleted in the order
i isuy L at time 0 < r p R t = 5 en:
11 ’ ’ =t S 2 < tn_ 3 3 - 0 Then
—_— - —
WL NS — = oy i i« SR Ao I, ~ oy
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— i ] -
g{il’ ) 1n lvn} g{ll; ) 1[1—11 )\nSntl
G-G = 1 e
n A s
a g{lz, = 5 ln} g{12, . ln-—l} (1 : Ansn_l(tz—tl)) _Ansntl
A s
n n-1
+ Y
Blly gy oo b gond ~gll ) ey L) (S TR Y,
(31) + = 1 -e
s
n n-k
k=1 <=k s (€t . _ =t )
T o« o] JEEe
=0
$ ene
; A ==t
, &ln} - gle} ™ an-3 (€5417%5)
Ansl j=0
In the case described above, g{1k+l’ o eraiy 1n_l,n} - gtlk+l’ Sy ln_l} =
c -c e = ¢
n n-1 n-k n-k-1 It
€k Cn-k—l - By 2T - < = for' "k = 1, .. 0 1
n n-k
S By
s0 by substituting L;L the expression would decrease. The terms
n
c -c
multiplying n—k\ o y & =0 CSuss n =1 add up to 1 , and so we have
“n n-k
¢ =@
B8 5 n n-1
n A S
n

which proves (30) and the theorem.l
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5. APPLICATIONS

In this section we list some problems that are optimized by SEPT

or LEPT. In general we note that for the special case where s, = *¢* =g

N > m , SEPT and LEPT are nonpreemptive. When s

will be needed. Thus in the following problems, when

1

>

L m

> Sm preemptions

= see = g

i m

N >m , we show SEPT or LEPT to be optimal in the class of nonpreemptive

policies. Also, by adding enough processors with speed 0 , we see

that some of these will not be used by the optimal policies. Hence the

SEPT and LEPT remain optimal when we allow insertions of idle time.

(1) SEPT Minimizes Expected Flow Time

We denote by C CZ’ etrent G the completion times of jobs 1, ..., N ,

N

and by O :_Tl N eReE R TV the completion times in their order of occurrence.

The expected flow time of a policy = is

The cost rate that yields this is:

g(u) = |u| ,

and it is easily seen that g satisfies the conditions

(2) SEPT Minimizes the Expected Sum of the First

of Theorem 3.

k Completions

We define

Iy - XL




The cost rate which yields this is

‘]U! - (n-k) for |U| > (n - k)
g(U) =
o for Ul < (n - k)

which satisfies the conditions of Theorem 3.

(3) SEPT Minimizes the Expected Weighted Sum of Completion Times
(Agreeable Weights)

Let a cost of wj > 0 per unit time be associated with task j ,

that is

We call the costs '"agreeable" if A > X => w > W, The appropriate

cost rate is

g(U) = Z W,
jeu 3
The priority ordering to be used is 1, ..., N , such that Ak > Xk+l
i A = ) = - i =
and if K Merl Yk 2 Yierp k L g N 1 . Obviously g(9) 0
g(u) >0, g - {2}) - g(U - {k}) = W - w, > OF Eor s ke <Nl and
g(U) - g(U - {k}) - g(Uu - {2}) + g(U - {k,2}) = 0 , so Theorem 3 applies.

Case 1 above is a special case of this problem with wj __ T [
Case 2 is not a special case of this problem. A different special case
is the sum of completion times of the k shortest tasks, obtained by

W, = sss = g =1‘wk+l=...=WN=o




T — — -

(4) SEPT or the "cu' Rule Do Not Minimize the Expected Weighted
Sum of Completion Times In General

The "cu'" rule is the priority policy which arranges the tasks as

: S " "
1, saes N WEER wlkl 3_w2x2 > 3_wNAN . When weights are "agreeable

it coincides with SEPT. The following two counter-examples show that

neither SEPT nor 'cu'" are optimal in general.
(1) n=3, s) =8, = il 8y = 0 (identical processors)

Al =3 W, = 3
AZ =3 W, = i
- = 2
X3 1 w3 2

5 S 1 132

= — + —_ T m—

G 6 L6 + 3(1 + 2) 3(3 + 2)] 36

ok el | 1 1\ | _ 129

¢ =3 La + 3(3 + 2) + 1(1 + 3)] X

i B IV La7

G -4L6+3(1+2)+1(l+3)] 36

so processing 1,3 first is optimal; It is neither SEPT,

(o G o I S I g, = ]

il 2
Al =3 w, = 1
Xz =1 Wy = 2
12 1 1 275
G " = 7 [3 +6 x 1+ 1 x 6] = 370

g*t « & [3 +3x1+

(¥}
x
o=
Rennnd
I
S| b
L od 52
olon

so putting task 2 on 1 and 1 on 2 is optimal, and is not

SEPT or ¢y

-
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(5) LEPT Minimizes Expected Makespan
The makespan is the time from O wuntil all tasks are completed.
The expected makespan is:
M = E(TN) = E(max (Cl’ Tl o CN))
This is obtained by:
‘l for U # 9@
g(U) =
)0 for U =90
which satisfies the conditions of Theorem 3.
(6) SEPT Does Not Maximize The Expected Makespan
The following counterexample shows that SEPT does not maximize the
expected makespan. Take
Ai = 106 for il T §_108
A =2
108+1
A i B
108+2
We have 2 identical processors and allow no preemptions. Then the
schedule 1,2, ..., 108 + 2 gives an expected makespan of approximately
51 % and the schedule lO8 i T R 108,108 + 2 gives an expected
makespan of 51 % . We conjecture that in the class of nonpremptive
policies the following schedule is optimal: If Xl RS AN there
exists an i , 1 < 1 ¢ N , such that the schedule 1,1 = 1, ...,
2,1,i +1,i+2, ..., N=-1,N maximizes the expected makespan.
o e S
L TUR i ¥ " aid S8 AN ' e ‘&'ﬂ.ﬁj‘“‘;

e
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(7) Minimization and Maximization of Expected Amounts of Work

Let Ml, SHaltale Mm be the total times during which processors

1, ..., m are occupied. For a fast policy Ml = TN » My = TN—l o eats

Mm = TN-m+l (here we assume m < N) . The amount of work done by

M

processor k 1is then It is desired to minimize:

o R

This is obtained from

e =;sl+ cer + s

" lul >«

PR e lu| < r
lul

1

It is easily seen that g satisfies the conditions of Theorem 3.
Hence Nr is minimized by LEPT, for every r (1 <r <m) . Thus we have:
LEPT minimizes the expected amount of work done by processors

3 R s (slMl G OICTE G err) , among all fast policies.

Also, because E(s,M, + *** + s M) = —L-+ ces +-l; , LEPT maximizes
100 m m A A
1 N
the expected amount of work done by processors r + 1, ..., m , among

all fast policies.

(8) Maximizing the Expected Life Length of a Reliability System

Given a series system of m component locations and N > m spares,

where the spares have exponentially distributed life lengths with parameters

i e A | <"'_<_A

1 £ A K N and the component locations cause wearout at rates

o R S N it is desired to allocate spares to component locations so

as to maximize the expected system lifetime. The problem is obviously

MR 3 FEL O nis Spad T RPNy A R
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equivalent to scheduling N tasks on m processors, where only fast

policies are allowed and E(Mm) = E( ) 1is to be maximized.

TN-m+l
Thus (using Case (6) with r = m - 1) , the expected lifetime of the
system is maximized when the best remaining component (one with smallest

A) is assigned (preemptively) to location 1, the 2nd best to location 2,

etc.

R = IRCIFPEN. . TN
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6. DISCUSSION

We have derived some sufficient conditions on the cost rate g ,
under which SEPT or LEPT minimize total expected cost. These conditions
include the requirement that g(¢) =0 , g(U) > g(V) for U DV . This
means that cost decreases as the set of uncompleted tasks decreases,
and from the proof of Theorem 1 and Lemma 1 it seems that it is a
necessary condition for the existence of an optimal policy which is fast
(both SEPT and LEPT are fast).

The sufficient condition for SEPT to be optimal is:

g(U) - g(U) - g(U,) + (U, ) >0 E e .

In the proof of Theorem 3, this is used to show that
" 3 v 5 3
(28) Ae-16 = 6, _1) > 2 (G -6 ,

and it seems that this is the most general condition under which (28)

holds.

The sufficient condition for LEPT to be optimal is less general,

and we conjecture that it is enough to require:

g(Uk) b g(Ul) R

and

g(U) - 8(U) g(Uk) = gl )

<

k,2

S S

n n-1

One generalization of the problems discussed above is to allow

arrivals of new tasks. We conjecture that LEPT remains optimal, since

-
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it minimizes makespan and thus will yield short busy periods.

Another direction to generalize the results is to look at general
distributions. The crucial question then is to find the appropriate

quantity by which to order the tasks. For a very special case, mixtures

of two fixed exponential random variables, SEPT minimizes flow time

and LEPT minimizes makespan [ 4 ].

AL 5250 i - o i i R

-1y,
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